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Although pioneered by human geneticists as a potential solution to the challenging problem
of finding the genetic basis of common human diseases1,2, advances in genotyping and se-
quencing technology have made genome-wide association (GWA) studies an obvious general
approach for studying the genetics of natural variation and traits of agricultural impor-
tance. They are particularly useful when inbred lines are available because once these lines
have been genotyped, they can be phenotyped multiple times, making it possible (as well
as extremely cost-effective) to study many different traits in many different environments,
while replicating the phenotypic measurements to reduce environmental noise. Here we
demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes
in Arabidopsis thaliana, a widely distributed, predominantly selfing model plant, known to
harbor considerable genetic variation for many adaptively important traits3. Our results
are dramatically different from those of human GWA studies in that we identify many com-
mon alleles with major effect, but they are also, in many cases, harder to interpret because
confounding by complex genetics and population structure make it difficult to distinguish
true from false associations. However, a priori candidates are significantly overrepresented
among these associations as well, making many of them excellent candidates for follow-up
experiments by the Arabidopsis community. Our study clearly demonstrates the feasibility
of GWA studies in A. thaliana, and suggests that the approach will be appropriate for many
other organisms.

The genotyped sample (Supplementary Table 1) includes a core set of 95 lines4 for which a
wide variety of phenotypes were available, plus a second set of 96 for which many phenotypes
related to flowering were available5. The lines were genotyped using a custom Affymetrix SNP-
chip containing 250,000 SNPs6. Since the genome of A. thaliana is around 120 million bp and
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the extent of LD comparable to that in humans7,8, the resulting SNP density of one SNP per 500
bp is considerably higher than is commonly used in human studies6.

To evaluate the feasibility of GWA studies in this organism, a variety of phenotypes were
generated or assembled. The phenotypes broadly fell into four categories: 23 were related to
flowering under different environmental conditions; 23 were related to defense, ranging from
recognition of specific bacterial strains to trichome density; 18 were element concentrations mea-
sured using inductively coupled plasma mass spectroscopy (“ionomics”); and 43 were loosely
defined developmental traits, including dormancy and plant senescence. For details about each
phenotype, see Supplementary Tables 2–5. The flowering phenotypes are generally strongly posi-
tively correlated, and are also negatively correlated with some other phenotypes, e.g., those related
to size at flowering (see Supplementary Fig. 9).

We first assessed evidence of association between each SNP and phenotype using the non-
parametric Wilcoxon Test (Fisher’s Exact Test was used for the small number of phenotypes that
were categorical rather than quantitative). A major difference between our study and the human
GWA studies published to date is that our study population is heavily structured, and there is
thus every reason to expect elevated false-positive rates9. Indeed, most phenotypes gave rise to
a distribution of p-values that was strongly skewed toward zero (Supplementary Section 2.1.6).
Fig. 1a shows the number of distinct peaks of association identified for each phenotype using
different p-value thresholds, as well as the number expected by chance alone. There is an excess
of strong associations across phenotypes, as expected given the presence of confounding popula-
tion structure (although we also expect some of these associations to be true). Furthermore, the
degree of confounding varies greatly between phenotypes. Phenotypes related to flowering are
generally more strongly affected, as would be expected given the correlation between flowering
and geographic origins.

The population structure in our sample is highly complex, involving patterns of relatedness
on all scales (see Supplementary Fig. 4). As in previous studies9, we found that, at least in terms
of producing a p-value distribution that does not show obvious signs of confounding, statistical
methods commonly used to control for population structure in human genetics10,11 fail to correct
for population structure, whereas the mixed-model approach introduced by maize geneticists12

appears to perform well (see Supplementary Section 2.1.6). Fig. 1b shows the number of peaks
of association identified using this approach (as implemented in the program EMMA13). The
excess of nominally significant association for flowering-related phenotypes has been eliminated,
as would be expected if this excess were mostly due to confounding by population structure.
There is a marked reduction in the number of associations of moderate significance (e.g., around
10−4) across phenotypes, but the excess of highly significant associations clearly persists (or has
even become greater). This is precisely what would be expected from an increase in statistical
power by switching to a parametric method that reduces confounding. It is tempting to conclude
that most of these extreme p-values must represent true associations, but there are reasons to be
skeptical. First, although EMMA appears to produce a p-value distribution that conforms to the
null-expectation (except for extreme values: see Supplementary Figs. 12–118), it seems almost
certain that some confounding remains (see below). Second, simulation studies suggest that the p-
values produced by EMMA are not always well estimated and should be interpreted with caution
(see Supplementary Section 2.1.5).

It is thus not straightforward to distinguish true from spurious associations, regardless of
whether we correct for population structure. There is no doubt, however, that there is real sig-
nal in the data. Indeed, regardless of method used, six phenotypes yield single, strong peaks of
association that are obvious by eye. In all cases, the association results effectively identify sin-
gle genes, and correspond to known functional polymorphisms. An example of this is shown
in Fig. 2, where the hypersensitive response to the bacterial avirulence gene AvrRpm1 directly
identifies the corresponding resistance gene RESISTANCE TO P. SYRINGAE PV MACULICOLA
1 (RPM1)14. Similar results were obtained for other disease resistance (R) responses, sodium
concentration, lesioning, and FRIGIDA (FRI) expression (see Supplementary Figs. 35, 37, 60, 76,
and 21, respectively).

More generally, SNPs closely linked to genes that are a priori likely to be responsible for a par-
ticular phenotype are significantly over-represented among SNPs associated with that phenotype.
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For many of the phenotypes analyzed it is possible to predict which genes might be important in
natural variation based on existing functional knowledge. For these phenotypes we determined
which of our SNPs were located within 20 kb of an a priori candidate, and tested whether these
SNPs were over-represented among nominally significant associations. Fig. 3 illustrates the pro-
cedure for flowering time at 10°C (FT10). For example, SNPs with a p-value less than 10−3

from EMMA and a p-value less than 10−5 from the Wilcoxon test are 2.7 times more likely to
be close to candidate genes than are randomly chosen SNPs. This simultaneously demonstrates
that background functional knowledge about flowering pathways helps predict which genes are
involved in natural variation and that our GWA results identify many true associations. Indeed, by
assuming that all associations not involving a priori candidates are false, we see that the inverse
of the enrichment ratio provides a crude upper bound for the false-positive rate among the a pri-
ori candidates (see Supplementary Section 3.2). Continuing the example in Fig. 3, no more than
40% of the candidate SNPs that are significant using both tests are false. This is an upper bound
because it seems almost certain that many of the (much larger set of) strong associations that are
not close to a priori candidates will also turn out to be real.

As illustrated in Fig. 3, a priori candidates are over-represented among strongly associated
SNPs regardless of whether we correct for population structure or not, and the SNPs identified are
not necessarily the same. Enrichment is clearly greatest among SNPs that are strongly associated
using both methods, however. This is true across the flowering-related phenotypes (Supplemen-
tary Fig. 10), and it is thus clear that both methods have utility. More stringent thresholds typically
yield stronger enrichment, but the variance also increases because the number of significant genes
decreases, and there is thus no simple relationship between degree of enrichment and its statistical
significance (Supplementary Fig. 11). Results for the other phenotypes are consistent with those
for the flowering-related traits, but the candidate gene lists are too short for statistical analysis
(Supplementary Section 3.1).

An additional problem in identifying true positives was the existence of complex peaks of
association. While many peaks were sharply defined and clearly identified a small number of
genes (illustrated in Fig. 2b), others were much more diffuse, sometimes covering several hundred
kb without a clear center. Fig. 4 shows an example of such a peak, and also suggests an explanation
for their existence. The figure shows the pattern of association with FLOWERING LOCUS C
(FLC) expression in the chromosomal region containing the vernalization-response gene FRI.
Polymorphisms in FRI are known to affect flowering time partly through their effect on expression
of FLC 5,15. SNPs in the FRI region should thus be associated with FLC expression. This is indeed
the case, but rather than a single peak of association centered on FRI, we have a mountain range
covering 500 kb and on the order of a hundred genes (Fig. 4a).

That FRI should be surrounded by a wide peak of association is, in itself, not surprising given
that the two common loss-of-function alleles at FRI appear to have been the subject of recent
positive selection16. Indeed, the entire range collapses if these two alleles are added as co-factors
to the model (Fig. 4d). More surprising is the fact that these two causal polymorphisms do not
have the strongest association within the region. If we reduce allelic heterogeneity by factoring
out one or the other of the two alleles, the significance of the remaining polymorphism increases,
but it is still not the most significant in the region (Fig. 4b–c). A likely explanation for this is
that some SNPs in the region are positively correlated (in linkage disequilibrium) with one of the
FRI alleles (because of linkage) and the genomic background (because of population structure).
This dual confounding is sufficient to make some of these SNPs more strongly associated with the
phenotype than the true positives.

Given the difficulties described above, deciding which associations are worth following-up
must necessarily be highly subjective. The strongest associations do not always correspond to ob-
vious candidates and are perhaps more interesting than associations in genes with known function.
However, in the absence of further evidence there is little point in discussing these associations.
Supplementary Table 6 lists some of the most promising associations: additional a posteriori
candidates for each phenotype are given in Supplementary Figs. 12–118. The genes listed were
selected based on annotation from within a 20 kb window surrounding each of the top 500 most
strongly associated SNPs (with minor allele frequency≥ 0.1 for EMMA), distinguishing between
those that had been considered candidates a priori and those that had not (the latter category is
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marked with asterisks in the tables). As demonstrated in Fig. 3, we expect a high fraction of the
associated a priori candidates to be real. The full data are available through the project website
(http://arabidopsis.usc.edu).

For the flowering-related phenotypes, one of the most striking findings was the strong corre-
lation between phenotypes generated under very different growth-chamber and greenhouse con-
ditions (Supplementary Table 2 and Supplementary Fig. 9: note that phenotypes from a field
experiment were much less strongly correlated). As expected given the correlation in phenotypes,
there are several regions of association that are shared across the majority of the flowering pheno-
types (Supplementary Fig. 119). These regions vary considerably in width, and many of them are
complex in the sense of Fig. 4, perhaps as consequence of strong selection. As expected given the
results presented in Fig. 3, several of these regions coincided with a priori candidates, like FRI 15

and FLC 17 (see Supplementary Table 6). Another interesting candidate is DELAY OF GERMINA-
TION 1 (DOG1)18, which, though not originally thought to be involved with flowering, is highly
associated with 20 different flowering phenotypes.

Among the other phenotypes, three previously identified resistance (R) genes polymorphisms
were readily identified8, as were genes known to be involved with variation in sodium (Na)19 and
molydenum (Mo)20 levels (Supplementary Table 6). Four genes known to be involved trichome-
formation were strongly associated with both trichome phenotypes: one of these associations has
recently been confirmed21. Finally, ACD6, which has been experimentally shown to be directly
involved in lesioning22, is detected here as associated with several lesioning and chlorosis pheno-
types. This association has also recently been experimentally confirmed23.

By the standards of human GWA studies, the sample sizes used in this study (∼96 or ∼192
lines) are tiny. It may thus seem surprising that we are able to map anything at all. However,
power depends on the genetic architecture of the traits as well, and this works in our favor in at
least two ways. First, we clearly find common alleles of major effect. Although effect sizes are
hard to estimate for the same reason p-values are, we note, for example, that in 44 phenotypes at
least one of the 50 most strongly associated SNPs with a minor allele frequency greater than 15%
explain more than 20% of the phenotypic variance (effect-size estimates and allele frequencies for
every association are on the project website). This is very different from human studies, which
have generally identified only polymorphisms of very small phenotypic effect. The difference is
likely due to the fact that, whereas human studies have focused on traits that are either deleterious
or under strong stabilizing selection (for which a very strong trade-off between allelic effect and
frequency is expected24), we are working with adaptively important traits. Indeed, human GWA
studies focusing on traits like skin color seem to yield results more like those presented here25,26.

Second, our study takes full advantage of the fact that we are working with inbred lines that can
be grown in replicate under controlled conditions, making is possible to study multiple phenotypes
while controlling environmental noise. Partially as a result of this, heritabilities for the traits
studied are generally high, ranging from 42% for aphid number to over 99% for several flowering
traits (Supplementary Table 7).

Without these advantages, the amount of genotyping required would have made a study like
the present one prohibitively expensive. That said, there is little doubt that power in our study
is severely limited by sample size. Simulation studies indicate that our power to detect alleles
similar to those actually detected in the study is often no more than 30–40% using a sample size
of 96 (results not shown). Increasing the sample size to 192 typically more than doubles power.
Well over 1,000 lines genotyped with our 250k SNP chip will soon be available: we look forward
to seeing associations from these lines. Efforts are also underway to sequence the genomes of all
these lines (http://www.1001genomes.org) — this will greatly facilitate follow-up studies, but we
do not expect a massive increase in power as a result of this, because the SNP density used here
seems adequate.

Power also depends on sample composition. In comparison with typical human GWA studies,
our sample is characterized by extremely strong population structure. This is expected given that
our global sample was collected partly to study population structure in A. thaliana4. GWA studies
that utilize different samples (including regional, more homogeneous ones) are under way.

The fact that population structure can cause confounding and lead to an elevated false-positive
rate is well known and the relative advantages of alternative statistical methods to correct for this
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have been much debated10,11,12,27. We feel that the discussion of this phenomenon has often been
misleading, in that population structure is neither necessary nor sufficient for confounding to oc-
cur. At least for complex traits, the problem is better thought of as model mis-specification: when
we carry out GWA analysis using a single SNP at a time (as is done in this, and most other GWA
studies to date), we are in effect modeling a multi-factorial trait as if it were due to a single locus.
The polygenic background of the trait is ignored, as are other unobserved variables. This kind of
marginal analysis causes no problem as long as the background is adequately captured by a vari-
ance term (or similar), but if the background variables are correlated with the SNP included in the
model, bias will result. Population structure will lead to correlations (i.e., linkage disequilibrium)
between unlinked loci, and this will usually (but not always28) lead to confounding. Positive cor-
relations are also expected as a result of strong selection. Both factors are likely to be important
in the present study: for example, it is easy to imagine that plants from northern Sweden will
tend to share cold-adaptive alleles at many causal loci as a result of selection, and marker alleles
genome-wide as a result of demographic history.

This way of thinking about the problem helps us interpret many of the results presented above.
First, it becomes clear why GWA works so well for traits that are monogenic, or at least are
mostly due to a single major locus. Examples in our study include the R gene responses (RPM1,
RPS2, and RPS5), FRI expression (FRI itself), and lesioning (ACD6). In all cases, GWA yields
unambiguous results regardless of whether we correct for population structure. The reason is not
that there is no confounding in these cases. The problem that has received so much attention in
human genetics — inflated significance among unlinked, non-causal loci — is clearly present, but
with truly genome-wide coverage this is not very important, because the true positive is expected
to show the strongest association.

Second, it helps us explain the occurrence of broad, complex regions of association. As ex-
emplified in Fig. 4, these can arise when SNPs in a region containing a major causative allele are
positively correlated not only with that causative allele (due to linkage disequilibrium in the nar-
row sense), but also with the genomic background (because of population structure and/or natural
selection). The paradoxical consequence is that instead of a single peak of association centered
on the causative locus, we expect a complex mountain landscape where many non-causal markers
will show stronger association than the causative allele itself. This makes it difficult to identify
the causal variant within such regions. This type of confounding does not appear to have been
recognized in the literature, and probably deserves more attention.

Third, it is clear that we should not expect statistical methods that are designed to take genome-
wide patterns of relatedness into account10,11,12 to correct for confounding that is due to selection
generating correlations between causal loci. These types of methods will work only to the extent
that the loci responsible for the genomic background have allele-frequency distributions that are
similar to those of non-causal loci, which is expected only if selection on each locus is weak.
Accurate estimation of the size of the effects of the many candidate polymorphisms identified here
(including distinguishing it from zero) will require either crosses or transgenic experiments. Any
cross will eliminate long-range linkage disequilibrium, and short-range linkage disequilibrium
can be overcome by choosing appropriate parental strains. For example, the FRI region in Fig. 4
also contains a promising association at CRYPTIC PRECOCIOUS (CRP), less than 100 kb away
from FRI (see Supplementary Fig. 127). If polymorphism at FRI is taken into account, CRP is no
longer significantly associated, but this does not necessarily mean that the association is spurious.
The two genes are too closely linked to be separated using standard crosses, but we can select
parental strains that segregate for CRP but not FRI.

Such crosses are currently being carried out, by us and by other members of the Arabidopsis
community. We also anticipate that many more phenotypes will be generated and added to our
public database. By combining results from GWA, linkage mapping, and perhaps also intermedi-
ate phenotypes (e.g., expression data), it will be possible to make progress on deconstructing the
regulatory networks that determine natural variation.

As genotyping and sequencing costs continue to decrease, GWA studies will become a stan-
dard tool for dissecting natural variation. It is thus important to recognize their limitations. The
problems raised here are not unique to A. thaliana. GWA alone will often not allow accurate esti-
mate of allelic effects. It must also be remembered that all mapping studies are biased in the sense
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that they can only detect alleles that explain a sufficient fraction of the variation in the mapping
population29. The present study can only detect alleles that are reasonably common in our global
sample. A GWA study using a more local sample would undoubtedly uncover more variants that
are locally common, and linkage mapping will identify major polymorphisms that happen to be
segregating in the cross, even if one of the alleles is extremely rare in natural populations. The
“genetic architecture” of a trait depends on the population studied. In order to determine how
genetic architecture affects selection and evolution, we thus also need to understand the spatial
and temporal scales over which selection is important.

Methods summary

Because slightly different sets were used in different phenotyping experiments, the total number
of lines used was 199 (Supplementary Table 1). Genotyping was done using standard protocols,
and a combination of SNP calling and imputation algorithms were used to analyze the results (see
Supplementary Section 1). We called 216,130 SNPs, at an estimated error rate of 1.6%. GWA
analysis was done with and without correction for confounding. For the former, a mixed-model12

implemented in the program EMMA13 was used. For the latter, Wilcoxon’s test was used for
ordinal data, and Fisher’s Exact Test for categorical data. Enrichment for candidate genes was
investigated using lists of a priori candidates identified from the literature.

Full Methods and any associated references are part of the Supplementary Information avail-
able online at www.nature.com/nature.
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Figure legends
Figure 1 I The number of associations identified using different p-value thresholds for each
phenotype. For each phenotype, the numbers of distinct peaks of association significant at nom-
inal p-value thresholds of 10−4, 10−5, . . . , 10−9 are shown. The number of SNPs (out of 250,000)
that would be expected to exceed each threshold is shown for comparison. a, No correction for
population structure (non-parametric Wilcoxon Test). b, Correction for population structure (para-
metric mixed model [EMMA]).

Figure 2 | GWA analysis of hypersensitive response to the bacterial elicitor AvrRpm1. a,
Genome-wide p-values from Fisher’s Exact Test. The horizontal dashed line corresponds to a
nominal 5% significance-threshold with Bonferroni-correction for 250,000 tests. b, Magnification
of the genomic region surrounding RPM1, the position (and extent) of which is indicated by the
vertical blue line.

Figure 3 | Candidate SNPs are over-represented among strong associations. GWA analysis
of the FT10 phenotype: negative log p-values from the Wilcoxon test are plotted against those
from EMMA. Points corresponding to SNPs within 20 kb of a candidate gene are shown in red;
the rest are shown in blue. The enrichment of the former over the latter in different parts of the
distribution is shown.

Figure 4 | Association with FLC expression at the top of chromosome 4 near FRI. The p-
values are from EMMA; the position of FRI is indicated by a vertical yellow line. a, Single-SNP
tests. b, Col-allele of FRI (blue dot) is added as co-factor in the model. c, Ler-allele of FRI (red
dot) is added as co-factor in the model. d, Both alleles added as co-factors in the model.
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